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 2 

Abstract 15 

Demeter is a community spatial downscaling model that disaggregates land use and land cover 16 

changes projected by integrated human-Earth system models. Demeter has not been intensively 17 

calibrated, and we still lack a good knowledge about its sensitivity to key parameters and the parameter 18 

uncertainties. We used long-term global satellite-based land cover records to calibrate key Demeter 19 

parameters. The results identified the optimal parameter values and showed that the parameterization 20 

substantially improved the model’s performance. The parameters of intensification ratio and selection 21 

threshold were the most sensitive and needed to be carefully tuned, especially for regional applications. 22 

Further, small parameter uncertainties after calibration can be inflated when propagated into future 23 

scenarios, suggesting that users should consider the parameterization equifinality to better account for the 24 

uncertainties in the Demeter downscaled products. Our study provides a key reference for Demeter users, 25 

and ultimately contribute to reducing the uncertainties in Earth system model simulations. 26 

 27 
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1. Introduction 30 

Land Use and Land Cover Change (LULCC) represents one of the most important human impacts on 31 

the Earth system (Hibbard et al., 2017). Besides its socioeconomic effects, LULCC is directly linked to 32 

many natural land surface processes, such as land surface energy balance, carbon and water cycle (e.g., 33 

Piao et al 2007, Law et al 2018, Sleeter et al 2018, Pongratz et al 2006), and indirectly affects the climate 34 

system (e.g., Dickinson and Kennedy 1992, Findell et al 2017, Costa and Foley 2000). Thus, LULCC has 35 

been considered as a key process in simulating of Earth system dynamics, and LULCC inputs at 36 

appropriate time steps and spatial resolutions are required to match the setup of the Earth System Models 37 

(ESMs) and the nature of spatial heterogeneity of the Earth system processes (Brovkin et al., 2013; 38 

Lawrence et al., 2016; Prestele et al., 2017). While recent historical LULCC information can be obtained 39 

by ground investigation or satellite remote sensing (Friedl et al., 2002; Hansen et al., 2000; Loveland et 40 

al., 2000; Zhang et al., 2003), projections of future LULCC largely rely on mathematical models that 41 

bring socioeconomic and other diverse sectoral information together in a coherent framework to simulate 42 

the interactions between natural and human systems. However, these integrated models project LULCC at 43 

subregional level, i.e., the basic spatial units that have uniform properties for every sector (e.g., 44 

agricultural, energy and water etc.), typically ranging from a few hundred to millions of square kilometers 45 

(Edmonds et al., 2012). For example, the GCAM model has been widely used to explore future societal 46 

and environmental scenarios under different climate mitigation policies which provides LULCC 47 

projections at region-agroecological or water basin level (Edmonds et al., 1997; Edmonds and Reilly, 48 

1985; Kim et al., 2006). ESMs divide the Earth surface into a number of grid cells and the forcing data 49 

have to be available at the same spatial resolution to drive the ESMs (Taylor et al., 2012). Therefore, 50 

spatial downscaling of the subregional LULCC becomes a critical step for linking models like GCAM 51 

and ESMs to investigate the effects of the LULCC on the processes in the natural world, and further the 52 

interactions between the human and natural  systems (Hibbard and Janetos, 2013; Lawrence et al., 2012). 53 

In previous studies, we have developed a land use and land cover change downscaling model, named 54 

Demeter, to bridge GCAM and ESMs (Le Page et al., 2016; Vernon et al., 2018; West et al., 2014). 55 

Demeter has been successfully applied at both global (Le Page et al., 2016) and regional (West et al., 56 

2014) levels for downscaling GCAM-projected land use and land cover changes, and has been further 57 

developed with an extensible output module which streamlines producing specific output formats required 58 

by various ESMs (Vernon et al., 2018). However, Demeter’s parameter values have been empirically 59 

determined and a complete analysis on Demeter’s parametric sensitivity and uncertainties as well as a 60 

rigorous model calibration has not been conducted to help minimize the propagation of downscaling 61 

errors. The major objective of this study is to develop a framework for calibrating the key parameters of 62 
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Demeter, testing and quantifying the parameter sensitivities and uncertainties, and demonstrating how the 63 

parameter uncertainties would affect downscaled products.    64 

 65 

2. Method 66 

2.1 Demeter 67 

Demeter is a land use and land cover change downscaling model, which is designed to disaggregate 68 

projections of land allocations generated by GCAM and other models. For example, GCAM projects land 69 

cover areas in each of its spatial units (e.g., region-agro-ecological zones, region-AEZ) for each land 70 

cover type, and Demeter uses gridded observational land cover data (e.g., satellite-based land cover 71 

product) as the reference spatial distribution of land cover types and allocates the GCAM-projected land 72 

area changes to grid level at a target spatial resolution, following some user-defined rules and spatial 73 

constraints. Below we briefly summarize the key processes of Demeter, and the detailed algorithms can 74 

be found in three earlier publications (Le Page et al., 2016; Vernon et al., 2018; West et al., 2014). 75 

 Demeter first reconciles the land cover classes defined in the parent model and the reference dataset 76 

to user-defined unified final land types (FLTs). Downscaled land cover types will be presented in FLTs. 77 

For example, if Demeter reclassifies the 22 GCAM land cover types and the 16 International Geosphere-78 

Biosphere Programme (IGBP) land cover types from the reference dataset into 7 FLTs (Forest, Shrub, 79 

Grass, Crops, Urban and Sparse), the 7 FLTs will be the land types represented in Demeter’s outputs by 80 

default. Demeter then harmonizes the GCAM-projected land cover areas and the reference dataset at the 81 

first time step (or ‘base year’) to make sure they are consistent with the GCAM spatial units and allocates 82 

the projected land cover changes by intensification and extensification. Intensification is the process of 83 

increasing a particular land cover in a grid cell where it already exists, while extensification creates new 84 

land cover in grid cells where it does not yet exist but is in proximity to an existing allocation. The order 85 

of transitions among land cover types is defined by “transition priorities” during the processes of 86 

intensification and extensification. A parameter (r, from 0 to 1) is defined as the ratio of intensification, 87 

and thus 1-r of the land cover change is for extensification. Proximal relationships are defined by spatial 88 

constraints that determine the probability that a grid cell may contain a particular land use or land cover 89 

class. The current Demeter setup includes three spatial constraints: kernel density (KD), soil workability 90 

(SW) and nutrient availability (NA). For each land cover type and grid cell, KD is calculated by the 91 

spatial distance (D) at the runtime, and SW and NA are estimated from the Harmonized World Soil 92 

Database (HWSD, FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). A suitability index (S) from 0 to 1 is defined 93 

as the weighted-average of the three spatial constraints to assess how suitable a grid cell is to receive a 94 

land cover type: 95 

S = (wK*KD+wS*SW+wN*NA)/(wK+wS+wN)                                         (1) 96 
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where wK, wS, and wN are the weights for KD, SW and NA, respectively, and the sum of them is 1. In the 97 

process of extensification, Demeter ranks candidate grid cells based on their suitability indices and selects 98 

the most suitable candidate grid cells following a user-defined threshold percentage (τ) for extensification.  99 

 100 

Table 1. Transition priorities by analyzing the 24-year global land cover records from the Land Cover 101 

CCI project of the European Space Agency Climate Change Initiative. The smaller numbers indicate 102 

higher transition priorities. 103 

Final Land Types (FLTs) 
Final Land Types (FLTs) 

Forest Shrub Grass Crop Urban Snow Sparse 

Forest 0 2 3 1 4 5 6 

Shrub 2 0 3 1 4 5 6 

Grass 1 2 0 3 5 6 4 

Crop 2 3 1 0 5 6 4 

Urban 1 4 3 2 0 6 5 

Snow 2 3 4 1 5 0 6 

Sparse 2 3 4 1 5 6 0 

 104 

2.2 Calibrate Demeter with historical land cover record and sensitivity analysis 105 

As indicated above, users should define a few parameters including the treatment order, the transition 106 

priorities for allocating the land cover changes, the intensification ratio r, the selection threshold τ, the 107 

radius for calculating kernel density D, and weights for the spatial constraints (wK, wS, and wN), in order to 108 

use Demeter for downscaling projected land cover change. These parameters were determined empirically 109 

in previous studies. Here we calibrated these parameters for Demeter using a time series of global land 110 

cover records from the Land Cover project of the European Space Agency Climate Change Initiative 111 

(referred to as CCI-LC products hereafter). The CCI-LC products have been generated by critically 112 

revisiting all algorithms required for the generation of a global land cover product from various Earth 113 

Observation (EO) instruments, thus provide a globally consistent land cover record over two decades 114 

(1992-2015). The CCI-LC products are available at 300 m spatial-resolution and annual time step and 115 

classify the global land cover into 38 groups. We reclassified the CCI-LC products into the default 7 116 

FLTs (Table S1) and resampled them into 0.25° resolution with the official software tools, following the 117 

description of CCI-LC products in the user guide 118 

(http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf). Figure 1 shows 119 

large interannual global changes for the 7 FLT areas, especially for the forests and croplands, which have 120 
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decreased and increased over 0.6 million km2 over the past two decades, respectively. We used the 121 

gridded 0.25° CCI-LC over the 24-year period as the observational data (below referred to “LC-grid-122 

obs”) and aggregated them into GCAM’s region-AEZ level to produce a synthetic GCAM-projected land 123 

cover change (below referred to “LC-AEZ-syn”). In this way, we can apply Demeter to LC-AEZ-syn to 124 

calibrate Demeter with the LC-grid-obs by tuning the parameters of Demeter.  125 

 126 

 127 

Figure 1. Interannual changes of global Final Land Type (FLT) areas over 1992-2015 relative to 128 

1992, as indicated by the ESA CCI-LC product. 129 

A preliminary sensitivity analysis of Demeter indicated that the downscaled results are not sensitive 130 

to treatment order and transition priorities (Le Page et al., 2016), thus we used the default treatment order, 131 
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i.e., from least to greatest: Urban, Snow, Sparse, Crops, Forest, Grass, Shrub. We decided the transition 132 

priorities by sorting the probabilities of transitioning one FLT to another based on the 24-year CCI-LC 133 

record (Table 1). To calibrate the other six parameters (r, τ, wK, wS, wN and D), we sampled their values at 134 

equal intervals (Table 2) and generated all possible combination (23,100 in total) for a Monte-Carlo 135 

ensemble Demeter downscaling experiment, using LC-AEZ-syn as the input. The Monte-Carlo 136 

experiment generated 23,100 sets of downscaled 0.25-degree global land use and land cover areas, which 137 

were compared against LC-grid-obs to calculate their similarities to the observational data, ranked by 138 

their discrepancies from the least to greatest to determine the likelihood of the parameters. We calculated 139 

the discrepancies as the root mean square error (Ey) between the downscaled and observed land cover 140 

areas for each year: 141 

                                                         (2) 142 

and the average of the discrepancies over the years (E): 143 

                                                                        (3) 144 

where g is the index for G grid cells over the globe (G = 265,852), l is the index for the L FLTs (L = 8), y 145 

is the index for Y years. We chose 1992, 2000, 2005, 2010 and 2015 to keep consistent with the GCAM 146 

time steps, thus Y = 5.  Ady,l,g and Aoy,l,g are the downscaled and observational land cover areas for grid 147 

cell g, FLT l and year y. The unit for Ey and E is km2. 148 

To test the model sensitivity to these key parameters, we conducted a sensitivity analysis using the 149 

results from the Monte-Carlo experiment. The first-order and total-order Sobol sensitivity indices were 150 

used to identify the model sensitivity to each of the six parameters (Saltelli et al., 2004). Let Xi denotes 151 

the ith parameter (i=1,…,n, here n=6), Y is the model outputs (i.e., E), the first-order Sobol index (Si) is 152 

defined as: 153 

                                                                     (4) 154 

And the total-order Sobol index (STi) is defined as the sum of sensitivity indices at any order 155 

involving parameter Xi, where Sijk…n denotes the nth-order sensitivity index: 156 

                                     (5) 157 

The first-order Sobol index represents the contribution to the output variance of the main effect of Xi, 158 

therefore it measures the effect of varying Xi alone; and the total-order Sobol index measures the 159 
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contribution to output variance of Xi and includes all variance caused by its interactions with other 160 

parameters. Larger Sobol indices indicate higher parameter sensitivities. 161 

 162 

Table 2. Key parameters, and their sampling range and steps for calibration in this study.  163 

Name Definition Min Max Sampling step 

wN 
Weight of soil nutrient availability for calculating 

suitability index 
0 1 0.2 

wS 
Weight of soil workability for calculating 

suitability index 
0 1 0.2 

wK 
Weight of kernel density for calculating suitability 

index 
0 1 0.2 

r Intensification ratio 0 1 0.1 

τ Selection threshold 0 1 0.1 

D Kernel radius 10 100 10 

 164 

2.3 Propagate the parameter uncertainties to GCAM LULCC downscaling 165 

We selected parameter combinations which produced the smallest 5% Es based on their rankings 166 

from the Monte-Carlo experiment, and used them as ‘acceptable’ parameters to represent the parameter 167 

uncertainties after calibration. We used Demeter with these parameters to downscale the GCAM-168 

projected LULCC at 5-year time step from 2005 to 2100 under a reference scenario to examine the 169 

uncertainties of land cover areas for each FLT to demonstrate how different the downscaled LULCC can 170 

be induced by the uncertain parameters. The reference scenario is a business-as-usual case with no 171 

explicit climate mitigation efforts that reaches a higher radiative forcing level of over 7 W m-2 in 2100. 172 

We only saved the downscaling results in 2005, 2010, 2050 and 2100 considering the size of the output 173 

files and computational cost. Finally, we calculated the standard deviation across the downscaled land 174 

cover areas for each FLT driven by different parameter combinations, which indicates the parameter-175 

induced model uncertainties.  176 

 177 

3. Results 178 
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3.1 Parameter estimation and sensitivity  179 

The Monte-Carlo Demeter experiment driven by the 23,100 ensemble parameter sets produced 180 

diverse downscaled LULCC realizations. As shown in Figure 2a, the disagreements between the 181 

downscaled FLT fraction and the reference record, measured by the average root mean square error (E, 182 

Equation 3) for all the FLTs and grid cells over the five years (1992, 2000, 2005, 2010 and 2015), are 183 

mainly distributed between 8 and 17 km2 (about 1%-3% of the area of a 0.25-degree grid cell). 184 

 185 

Figure 2. (a) Histogram of the Es, i.e., the global average discrepancies between the downscaled 186 

and observed land cover areas with the 23,100 ensemble parameter sets; the vertical dashed line 187 

in (a) shows the interval of the ‘best’ 5% parameters, as described in Section 2.3; (b) the 188 

probability density of each of the ‘best’ 5% parameters, as shown by the violin plots; the black 189 
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lines across the six parameters show all the ‘best’ 5% parameter sets, and the red line indicates 190 

the global optimal parameter values; the box plots and horizontal bar inside the violin plots 191 

indicate the interquartile ranges and the mean of the parameter values, respectively. Note that the 192 

values of D were divided by 100 for the purpose of illustration in (b). 193 

 Figure 3 shows the relationship between the values of the six parameters and their corresponding Es, 194 

resulted from the Monte-Carlo experiment. We found that the Es are significantly correlated to all the six 195 

parameters (p<0.01). The intensification ratio (r) has the strongest linear correlation with the Es 196 

(R2=0.64), followed by the selection threshold () (R2 = 0.24). Overall, the parameters wK and   are 197 

positively correlated with Es (positive slopes of the trendlines), while wN, wS , r and D hold negative 198 

correlations, indicating that smaller wK and  , and larger wN, wS , r and D are associated with smaller Es.  199 

 200 

Figure 3. Relationships between the six Demeter parameters and the global average 201 

discrepancies between the downscaled and observed land cover areas (Es) resulted from the 202 

Monte-Carlo ensemble experiment. Box plots shows distributions of the Es and the solid lines 203 

show the linear trends. 204 

Figure 4 shows the first-order and total-order Sobol indices calculated with the parameter ensemble 205 

and the associated Es. As indicated by the first-order Sobol indices, the intensification ratio r directly 206 

contributes about 59% to the variability of the Es, followed by the selection threshold  and kernel radius 207 

D, which directly contribute 29% and 1% to the variability of the Es. The other parameters (wN, wS and 208 

0 0.2 0.4 0.6 0.8 1

w
N

8

10

12

14

16

18

E
 (

k
m

2
)

R
2
=0.001; p<0.01(a)

0 0.2 0.4 0.6 0.8 1

w
S

8

10

12

14

16

18

E
 (

k
m

2
)

R
2
=0.001; p<0.01(b)

0 0.2 0.4 0.6 0.8 1

w
K

8

10

12

14

16

18

E
 (

k
m

2
)

R
2
=0.005; p<0.01(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

8

10

12

14

16

18

E
 (

k
m

2
)

R
2
=0.640; p<0.01(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

E
 (

k
m

2
)

R
2
=0.243; p<0.01(e)

10 20 30 40 50 60 70 80 90 100

D

8

10

12

14

16

18

E
 (

k
m

2
)

R
2
=0.005; p<0.01(f)

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-248
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 2 January 2019
c© Author(s) 2019. CC BY 4.0 License.



 11 

wK) have little direct contributions to the E variability. The total-order Sobol indices showed similar order 209 

of parameter importance. r and its interactions with other parameters contributed about 70% of the E 210 

variability,  contributed about 40%, D contributed about 3%, and wN, wS and wK contributed 2% 211 

respectively. It is clear that the downscaling error is most sensitive to the intensification ratio, followed by 212 

the selection threshold, but not sensitive to the kernel radius and the weighting factors of the spatial 213 

constraints. 214 

 215 

Figure 4. Sobol sensitivity indices for the six Demeter parameters. Higher indices indicate higher 216 

sensitivities. The first-order index measures the effect of varying a parameter alone; and the total-order 217 

index includes all variance caused by a parameter’s interactions with other parameters. 218 

We identified the ‘best’ parameters, which are associated with the lowest E, and marked them as the 219 

red line in Figure 2b. We also selected acceptable parameters that have Es lower than 5% quantile in 220 

Figure 2a and thus have the similar performance as the ‘best’ parameters (differences of E < 1%), and 221 

used them to represent the uncertainty of the parameters shown as the probability density distributions in 222 

Figure 2b. The best wN, wS, wK, r,  and D are 0, 0.6, 0.4, 1, 0.6 and 100, respectively. All the parameters 223 

are constrained with the calibration comparing to their uniform prior distributions. The intensification 224 

ratio r has been constrained into a small range (0.9-1.0 and mostly 1.0) from 0-1.0. Constraining on the 225 

other parameters are relatively weaker: wN, wS, and wK have been narrowed to the ranges of 0-0.8, 0.2-1.0, 226 
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 and D have been constrained into the range of 0.2-1.0 and 30-100 with the first and third quantiles being 228 

0.2-0.8 and 40-90, respectively. This analysis again indicates that r is the most sensitive parameter, 229 

therefore its posterior distribution can be significantly narrowed through the calibration.  230 

 231 

3.2 Performance of Demeter in downscaling LULCC   232 

Demeter generally performs well in downscaling the synthetic land use and land cover change with 233 

small disagreements with the reference data. For all FLTs, the disagreements between the downscaled 234 

FLT fraction and the reference record in 1992 (i.e., E1992 in Equation 2), are close to zero since we used it 235 

as the harmonization year. The disagreements in 2000 (E2000) are mainly distributed in a range between 5 236 

and 15 km2 (about 1%-2% of a 0.25-degree grid cell), with the median about 10 km2 and the mean 237 

slightly above 12 km2 (Figure 5h). The disagreements increase over years at a rate of about 1 km2 per 5-238 

year time step and reach 13-24 km2 (median: 15 km2; mean: 18 km2) in 2015. Overall, the average 239 

disagreements over the five years (E) mainly distributed in 8-17 km2 (also shown in Figure 2a), with the 240 

median of about 10 km2 and the mean of about 12 km2. 241 

 242 

Figure 5. Possibility densities for the Es between downscaled and observational Final Land Type 243 

areas for 1992, 2000, 2005, 2010, 2015 and the mean of the five time-steps. The box plots and 244 

horizontal bar inside the violin plots indicate the interquartile ranges and the mean of the 245 

parameter values, respectively. Note that the Es for ‘Snow’ are close to 0 thus not visible in the 246 

figure. 247 
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 248 

The errors for each of the FLTs follow the same increasing trend over the years. Forest and crop have 249 

the largest disagreements between the downscaled and reference distributions with the errors are 250 

primarily located in the range of 20-40 km2 in average over the five time steps (Figure 5a,d). The errors 251 

for sparse lands are relatively smaller, which mainly fall into the range of 10-20 km2 (Figure 5g), 252 

followed by grass, shrub and urban, with the errors are mainly distributed in 0-10 km2 averagely over the 253 

five years. Errors for snow is near zero since there was little areal change for this FLT in the CCI-LC 254 

record (Figure 1) and little LULCC allocation was needed in the downscaling process over the years. 255 

 256 

Figure 6. Comparison between the observed and downscaled Final Land Type with optimal 257 

parameters over the 265,852 0.25-degree grid cells in 2015. The blue solid lines show the 1:1 line, 258 

and the red dashed lines show the 95% confidence intervals. 259 

Figure 6 shows the comparison between reference gridded CCI-LC FLTs and the downscaled FLTs 260 

driven by the best parameters (see Section 3.1) among the 265,852 0.25-degree grid cells in 2015. Except 261 

for urban, the downscaled land cover of other FLTs match the reference record very well (all R2 are above 262 

0.98). The R2 is 1 for snow due to little change of snow and ice area in the CCI-LC record. Figure 7 263 

demonstrates the spatial distribution of FLT fraction from the reference data and best downscaled results, 264 

together with their differences, using crop as an example. We find that the downscaled results have 265 

successfully reproduced the spatial pattern of crops from the reference data, and similar conclusions can 266 

be drawn for other FLTs (see Figure S1-S5; figure for Snow was not shown because of little change for 267 

this FLT). Misallocation of the changes primarily takes place in Brazil, China, temperate Africa and 268 

Northern Euroasia, where most of the LULCC happened over the study years.   269 
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 270 

 271 

 272 

 273 

 274 

 275 

Figure 7. Spatial pattern of the observed and downscaled crop density (measured by percentage 276 

fraction of the grid cell), and their differences in 2015. The lines show the boundaries of the 277 

GCAM region-AEZs. 278 
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3.3 Uncertainty propagation 279 

While applying the ‘acceptable’ parameters in downscaling GCAM projections of LULCC under the 280 

reference scenario, we found that these well-constrained parameters induced considerable uncertainties in 281 

the downscaled results. For each grid cell, we calculated the standard deviation () of the downscaled 282 

land cover areas with different parameters for each FLT (Figure S6). Figure 8 shows the mean  of the 283 

265,852 0.25-degree grid cells over the globe for 2005, 2010, 2050 and 2100, as well as the spatial 284 

variability of  (calculated as the standard deviation over the grid cells and shown as the shaded area in 285 

Figure 8). The uncertainty of parameters has little effect on downscaled Urban and Snow areas, since 286 

GCAM projected little areal changes of urban and snow. Downscaled sparse areas were slightly affected 287 

by the choice of parameters, indicated by small mean  (about 2 km2 per grid cell). However, the other 288 

FLTs, including Forest, Shrub, Grass and Crop have larger s, which also showed an increasing trend 289 

over time. The global mean  for Forest, Shrub and Grass reached about 4 km2 per grid cell and about 7.5 290 

km2 for Crop in 2100. The spatial variability of  was also larger for these FLTs, for example, the 291 

standard deviation of  reached over 15 km2 per grid cell in 2100 for Crop, and the maximum  can be 292 

over 350 km2 per grid cell in some grid cells (Figure S6). 293 

 294 

 295 

Figure 8. The mean (shown as the solid lines) and standard deviations (, shown as the shaded 296 

area) for the downscaled Final Land Type areas, when propagating the parameter uncertainties 297 

into the GCAM-projected land use and land cover change downscaling in the 21st century. 298 
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4. Discussion 299 

To date, there has been only a handful of methods for downscaling projected global land use and land 300 

cover change. For example, Oskins et al (2016) fitted a statistical model relating coarse-scaled spatial 301 

patterns in land cover classes to finer-scaled land cover and other explaining variables. Many more 302 

studies used complex land use modeling approach (e.g., Houet et al 2017, Oskins et al 2016, Meiyappan 303 

et al 2014, Hurtt et al 2011, Souty et al 2012) that combines a variety of socioeconomic processes to 304 

provide global scale land use allocations. Our results demonstrated that Demeter is an effective tool for 305 

downscaling global land use and land cover change, although it adapts a relatively simpler approach. 306 

However, choices of parameter values are critically important for a simple model, since it is possible that 307 

some complicated processes are simplified to be represented by a single parameter. Although an 308 

uncalibrated Demeter can lead to noticeable errors and uncertainties in downscaled land cover areas, our 309 

results have shown the effectiveness of the calibration efforts in minimizing the downscaling errors and 310 

constraining the uncertainties.  311 

Interestingly, we found that the parameters of intensification ratio and selection threshold strongly 312 

affected the downscaled results, while the weights of the spatial constraints and kernel radius showed 313 

small impacts on the results. This result indicates that the selected spatial constraints (soil workability and 314 

nutrient availability) and spatial autocorrelation (measured by kernel density) provide loose constrains on 315 

the land allocation in the downscaling process. We also noticed that the intensification ratio has been 316 

strictly constrained to a range close to 1.0, suggesting that the intensification of land cover, especially 317 

cropland, may be the major contributor to the global land use and land cover change, thus spatial 318 

constraints on extensification are not very effective.  319 

There has been a number of numerical methods for model calibration, such as gradient methods 320 

(Ypma, 1995), evolutionary algorithms (Ashlock, 2006), and data assimilation techniques (Kalnay, 2002). 321 

Our calibration method is relatively simpler, and the sampling steps are relatively coarse. As a result, it is 322 

possible that the calibrated parameters can be further improved with a more rigorous calibration strategy, 323 

although these biases should be small since the sampling bins are narrow and the sensitive parameters are 324 

well constrained (Figure 2). However, our method has a few advantages for this particular global land use 325 

and land cover change downscaling model calibration problem. First, we sampled the whole parameter 326 

space thus our Monte-Carlo downscaling experiments can well represent the parameter uncertainties. 327 

Second, the other methods mentioned above typically adjust model parameters and run the model 328 

iteratively to find the parameters to hit the local or global minimum cost function value (Chong and Zak, 329 

2013), and thus can be very time consuming due to the size of the datasets and the difficulty of algorithm 330 

parallelization. The Monte-Carlo ensemble runs of Demeter in our method can be easily parallelized and 331 

thus is computationally efficient. Finally, the saved downscaled results from the global Monte-Carlo 332 
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downscaling experiment can be reused for regional applications. Our study provided an optimal set of 333 

Demeter parameters. It is worth noting that these parameters are optimized to minimize the average 334 

discrepancies between the downscaled and historically observed land cover areas at the global scale, thus 335 

they may need to be recalibrated when Demeter is applied to a particular region. For example, the best 336 

estimate of the intensification ratio is 1 for a global downscaling experiment, probably due to that 337 

intensification is a more common phenomena than extensification during the past land use and land cover 338 

change in the past two decades as recorded by the ESA-CCI data. However, this high intensification ratio 339 

for Crop may be more realistic for the regions with long-term agricultural history (e.g., India), while it 340 

should become lower for the United States (US) where cropland extensification rapidly happened in the 341 

past century. We extracted the grid cells in the conterminous US (grid cells between 25 N and 50 N, and 342 

125 W and 65 W) and India (grid cells between 7 N and 33 N, and 68 E and 98 E), and used them 343 

together with the same method as the global calibration to determine the optimal parameters for the US 344 

and India, which clearly showed that the intensification ratio remained 1 for India, but moved towards 345 

lower values for the US (Figure S7). 346 

Model calibration usually can provide several sets of parameters to allow the calibrated model to give 347 

similar results, which is called equifinality (Beven and Freer, 2001). As a result, the calibrated parameters 348 

become another source of uncertainty in model-simulated results. The equifinality also exists in our 349 

calibrations. We have observed noticeable growing uncertainties in downscaled land cover areas while 350 

propagating the parameter uncertainties into the Demeter downscaling practices with GCAM projected 351 

LULCC in the 21st century. Therefore, while calibration can remarkably reduce the uncertainty of the 352 

parameters, it may be better to use sets of constrained parameters rather than a single set of ‘best’ 353 

parameters in the practice of Demeter, for the purpose of accounting for the parameter uncertainty and 354 

providing more reliable land use and land cover change downscaling. 355 

 356 

5. Conclusions 357 

We developed a Monte-Carlo ensemble experiment for Demeter, a land use and land cover change 358 

downscaling model of GCAM, analyzed the model’s sensitivity to its key parameters, and calibrated the 359 

parameters to minimize the mismatch between the model-downscaled and satellite-observed land use and 360 

land cover change in the past two decades. We identified the optimal parameter values for global 361 

applications of Demeter, and showed that the parameterization of Demeter substantially improved the 362 

model’s performance in downscaling global land use and land cover change. The intensification ratio and 363 

selection threshold turned out to be the most sensitive parameters, thus need to be carefully tuned, 364 

especially when Demeter is used for regional applications. Further, the small uncertainty of parameters 365 

after calibration can result in considerably larger uncertainties in the results when propagating them into 366 
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the practice of downscaling GCAM projections, suggesting that Demeter users consider the 367 

parameterization equifinality to better account the uncertainties in the Demeter downscaled land use and 368 

land cover changes.  369 

 370 

 371 

Code Availability 372 

The source code of GCAM and Demeter is available at https://github.com/JGCRI/gcam-core 373 

and https://github.com/IMMM-SFA/demeter. The scripts for performing the calibration and analysis are 374 

available at https://drive.google.com/open?id=1qNzh4eKgVcO_BjG2RjAw33whqxSMH8wm.  375 
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